Extensions 1→N→G→Q→1 with N=C2 and Q=S33

Direct product G=N×Q with N=C2 and Q=S33
dρLabelID
C2×S33248+C2xS3^3432,759


Non-split extensions G=N.Q with N=C2 and Q=S33
extensionφ:Q→Aut NdρLabelID
C2.1S33 = S32×Dic3central extension (φ=1)488-C2.1S3^3432,594
C2.2S33 = S3×C6.D6central extension (φ=1)248+C2.2S3^3432,595
C2.3S33 = Dic36S32central extension (φ=1)488-C2.3S3^3432,596
C2.4S33 = S3×D6⋊S3central stem extension (φ=1)488-C2.4S3^3432,597
C2.5S33 = S3×C3⋊D12central stem extension (φ=1)248+C2.5S3^3432,598
C2.6S33 = D64S32central stem extension (φ=1)248+C2.6S3^3432,599
C2.7S33 = D6⋊S32central stem extension (φ=1)488-C2.7S3^3432,600
C2.8S33 = (S3×C6)⋊D6central stem extension (φ=1)248+C2.8S3^3432,601
C2.9S33 = C3⋊S34D12central stem extension (φ=1)248+C2.9S3^3432,602
C2.10S33 = S3×C322Q8central stem extension (φ=1)488-C2.10S3^3432,603
C2.11S33 = C335(C2×Q8)central stem extension (φ=1)488-C2.11S3^3432,604
C2.12S33 = C336(C2×Q8)central stem extension (φ=1)248+C2.12S3^3432,605
C2.13S33 = (S3×C6).D6central stem extension (φ=1)248+C2.13S3^3432,606
C2.14S33 = D6.S32central stem extension (φ=1)488-C2.14S3^3432,607
C2.15S33 = D6.4S32central stem extension (φ=1)488-C2.15S3^3432,608
C2.16S33 = D6.3S32central stem extension (φ=1)248+C2.16S3^3432,609
C2.17S33 = D6⋊S3⋊S3central stem extension (φ=1)488-C2.17S3^3432,610
C2.18S33 = D6.6S32central stem extension (φ=1)488-C2.18S3^3432,611
C2.19S33 = Dic3.S32central stem extension (φ=1)248+C2.19S3^3432,612

׿
×
𝔽